If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-3x=49
We move all terms to the left:
10x^2-3x-(49)=0
a = 10; b = -3; c = -49;
Δ = b2-4ac
Δ = -32-4·10·(-49)
Δ = 1969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{1969}}{2*10}=\frac{3-\sqrt{1969}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{1969}}{2*10}=\frac{3+\sqrt{1969}}{20} $
| 1+4n=8n+5 | | 5w-31w+28=0 | | 7n-8=-14+5n | | -4(4n-4)=-112 | | 2-2n=-3-n | | 3-6a=6-7a | | (3/5)(2m-10)=(2/3m)+10 | | -38=11x+11x+12-7 | | x=3.9=12.4 | | 2/7(x+4)=-1/2x+5/7 | | -38=11x+11x+12 | | (5x-2)+76+2x=180 | | x-9.25=3.12 | | -6r=-108 | | .-11=a+8 | | a-18=-34 | | 6n-20=-2n+4 | | 3.1x-0.2x=1.50 | | 3m2+1m-4=0 | | -24=x-5 | | -14x-5=10x-45 | | 12(1/3x-3/4=-1/12) | | (2x+6)+36+(4x-18)=180 | | 6x-8.2x=-16 | | 6x+75=3 | | 40+(5x+15)+(8x-5)=180 | | 13-(2x+2)=2*(x+2)+3x | | 2(y+4)+3(y-2)=10 | | -8(2x+3)=7(-6-2x) | | 63585.5=(0.785)(x2) | | (19-2(3x-1))/5=x-2 | | 2x+90+(3x+5)=180 |